OSI/UK User Group Newsletter

Vol.2 No.4 June 1981

Speeding things up

600 baud cassette interface [0 relocating the assembler
disk data separators [and our usual miscellany

Editorial

Time for some changes?

As usual, things have been happening quietly in the background of the OSI
scene. Again, we're late with this issue — reasons for this anon — and again the
‘official distributor’ status of our friends at American Data has been coming under
scrutiny. With their exclusive European distributor contract coming up for
renewal at the end of July, AmData decided to review their prices ‘in line with the
falling pound’, we're told. The result: Superboards at a mere £209, a C1 at around
£350, and so on. We picked up many a comment from dealers that OSI kit is
unsaleable at these kind of prices. Bob Crook, Alan Davies and company at
OS(UK) are supposed to be aiming at the business market, but this new trick has.
priced the C3 above the PDP-11! At the same time, Chris Cary has put the price of
the UK101 down, to £120 for the kit version.

However, all is not so gloomy as it may sound. Urgent representations from the
dealers seem to have had the desired effect, since the new price list seems to have
been withdrawn at present; and Jim Cross, Ohio’s sales manager, even came over
to the MicroSystems show for discussions with dealers about the tangled state of
affairs over here. The grapevine suggests that AmData’s contract will not be
renewed, but we will still be able to keep OS(UK)'s facilities, as part of Ohio
Scientific itself rather than a ‘pretend’ version — to give us, at last, proper
manufacturer backup in Britain. Whether this will prove true we have yet to see; |
certainly hope it will.

Further whispers from the grapevine state that there will be no immediate
replacement, and no new support facilities, for the Superboard et al.; the nearest
thing to it will be the C5-DT, the baby member of OSI's IBS-Net business system.
OSi aren’t actually dropping their hobbyist side, but we suspect that without a
few prods from us it will be left to fade away on its own.

Which is not what we want to happen to this User Group, and which is why I am
having to hand over the editorship of this Newsletter. As explained at the end of
this issue, | can no longer afford the time to run the editorial side alone; Richard
and George, along with Dave Caine, Bob Bonser and others, will be taking this
over during the next few issues, so | can deal more effectively with production
and distribution. We will, incidentally, be at the PCW Show, September 10th-12th
— stand T5 — we look forward to seeing you there!

Editor/production/documentation

Tom Graves: 19a West End, Street, Somerset BAT6 0LQ; Street (0458) 45359 (early
evenings only, preferably Tuesdays or Wednesdays)

Hardware/disk systems; new members

George Chkiantz, Richard Elen: 12 Bennerley Road, London SW11 6DS

For those who are new to the Group, we exist 1o provide an information service
and exchange on all matters on Ohio Scientific and related systems -— UK101 and
others. Membership is £10 a year, mostly for six issues of this Newsletter; the
‘vear’ begins December. We also handle technical queries and the like; but as
mentioned above, it's becoming increasingly difficult to answer them promptly!

C

4

C ¢

BASIC Notes

The WAIT instruction
A few notes from Brian James of Salford University:

WAIT |,],K The WAIT statement is intended for programs which involve the use
of some interfaced device connected to the computer. It is used when the
statements following it must only proceed after some event signalled by the
interfaced device. (See the earlier discussion of WAIT in Vol.2 No.2 — Ed.) The
signal from the interfaced device is sent to a register at the address I referred to in
the WAIT statement, the signal being connected to one of the data lines D0 to D7.
There may be a total of eight signals associated with address I, such as the eight
individual lines of a PIA.

The action of WAIT I,],K is to take the contents () of address 1 and
exclusive-OR them with K which should contain the initial pattern expected at the
address I. This means that the individual bits of €’ are compared with the bits in
the same position of Kand each give a bit value ot 0 where Cand K match and a
value of 1 when they do not match (see the exclusive-OR truth-table below). For
example:

C =11000111
K =00001111
would give RR = 11001000

(where R is the resultant bit setting)

and C =00001001
K =00001001
would give R = 00000000

so that if the binary pattern set in K exactly matches the contents of the address [,
namely C, we will get an output of 0 in R. This result is then ANDed with /, for
example if /=8 which is 00001000 we can inspect whether D3, the fourth bit has
changed, and if /=9 which is 00001001 we can inspect D3 or DO. The value of /, in
decimal, indicates which bits are to be inspected, and the value of K, in decimal,
gives the binary pattern of the expected initial setting of C, the contents of the
address |.

The statement WAIT 1,],K will prevent further execution of the program until
the pattern at | changes as determined by the values of Jand K. For example if we
want to wait until either DO or D3 change from 1 to 0, or D5 changes from 0 to 1,
the binary pattern in K should be set to xxOxIxx! (where x = “don’t care’) the
setting is done in decimal as 9 (or in this case any number with 0in D5, and 1 in
both D3 and D0). The binary pattern in /, to select the data bits to be examined,
should be set as 00101001, which is 41 in decimal. If we wish to test for both DO
and D3 changing from 1 to 0 we should have to use more than one WAIT
statement, WAIT 1,1,1 to wait for DO to change and WAIT 1,8,8 to wait for D3. The
WAIT statement prevents continuation of the program until the result of its action
is non-zero.

The interfaced device at address | is most conveniently buftered to the
microprocessor data bus by a transparent buffer such as a 74125. (Note that the
74125 buffer has tri-state outputs). The output enable E of the buffer is driven by
the decoded address I. The 74125 may be used to buffer logic levels from A-to-D
converters where signals such as ‘busy” and “data valid” have to be examined, and
also the setting of switches in circuits such as that shown in the diagram below.

2

) Vee
C K &K 4'"5___[;E o
8 (I) (I) Sweren (Y (14125)
) | GND

I ! 0

Truth-table tor X-OR tunction Circuit to detect switch position

Also on WAIT, a few notes from Jack Pike:

The only time | have used WAIT other than when testing it was when trying to
input BASIC programs as strings, and hit delimiter problems. | have enclosed
BASIC program using WAIT (shown below -~ Ed.) which reads a BASIC program
directly into RAM without tokenising it, and then will read it back out onto tape
The plan was to be able to modify the program whilst in RAM, mamly o | could
automate transferral of BASIC programs written for other machines. As soon as |
have my RS232 interface working | will have access to a large range ot BASIC
programs that need few mods to be able to run on a Superboard. 1 have not vet
written the conversion program, there is just too much to do! ”

The program uses WAIT to input a BASIC program from tape into RAM from
$800 on, and to output the program again to save it (on hitting the space-bar). It
was developed to get round the problems of having characters like , : “and @i in
string input. Only characters 031 are masked (line 40) trom the input. They cause
a new line to be initiated (when “line-input” tlag 1=0). The array P contains
pointers to the start of each new line in RAM (up to 100 linesi. Lines 100 on output
the program for saving on tape.

Obviously the application of this program is a bit specialised. 1t was developed to
check the feasibility of this type of input. Thus although it “works", it is not
necessarily efficient or robust.

Practical Electronics UK101 interface system — a review
at J. Gillen (GAGVW)

Commencing in their January 1981 issue, Practical Flectronics magazine has been
running a series of articles on the subject of interfacing the UKI0T single-board
computer to the outside world. The UKI0T is based on the Superboard and the
author of the series, D.E. Graham, has intimated that the interfaces described in
the articles are Superboard compatible.

Interfacing of UKI0T and Superboard is a subject of considerable interest to
many owners of these computers as in their basic torm these boards do not have
accessible ports for interfacing to external facilities apart from the provisions
made for cassette etc.

3

oy e

Although there are now quite a number of expansion boards on the market
offering interfacing facilities, there is evidence to suggest that the PE series has
aroused much interest. With this in mind, | thought it would be usetul to provide
Group members with a brief review of one constructor’s experiences and
opinions of part of the interface system.

Documentation

The series of articles describing the interfaces is written by D.E. Graham and
accompanied by a considerable amount of illustrative and tabular information.
Mr. Graham'’s text is extremely interesting and he goes to considerable trouble to
fully explain the principles behind his approach. Whether intending to construct
the interfacing modules or not, the UK101 (or Superboard) owner wishing to
improve his knowledge of the principles of computers applied to control and data
acquisition would learn much from the series of articles. For the owner who does
construct the modules, the articles form the basis of a documentation file which
will be far superior to that provided for the main board.

Al the time this review was written, (April) the series had described the
construction and application of two modules. The first of these is the subject of
this review and is described as the decoding module. The second module in the
series is designed to ‘plug in’ to the first module.

The decoding module

The module was designed to provide address decoding, user port and power
supply facilities for a wide range of external control devices and expansions.
Included in the text are a number of such ideas together with short software
routines to demonstrate their operation. Decoded lines are provided for
particular application to further interfaces to be described in later PE articles but
more than sufficient information is given for the experienced constructor to let
his (or her) imagination run riot.

Construction

I am usually loath to purchase kits, preferring to use components to hand for
most constructional purposes. However, due to business pressures and a
reasonable price being quoted for the kit from Technomatic Ltd | decided to
purchase the kit to save time on the project.

All the parts provided were of acceptable quality and well packed to guard
against transit damage. The printed-circuit board is double-sided but does not
have plated-through holes. Connection between top and bottom tracks is
accomplished in the usual way by soldering pins (not provided) or suitably sized
wires in the appropriate locations.

All'ICs are socketed and plugs are provided for the DIL sockets which are used
for connecting to the ports. Also provided are two edge connectors for making
connection with parts of the board. Herein lies the first snag! The edge
connectors provided do not have fixing lugs and, to compound the problem,
someone forgot to provide any fixing holes on the PC board. | prefer to mount
circuit boards firmly in place when finished, and have seen some unfortunate
mishaps to lovingly-constructed sub-assemblies left dangling in their inter-
connecting wiring. However, these problems have been overcome by a suitable
‘bodge’. | feel that the board would have been a lot better cosmetically had the
edge connectors been located on a common edge or, better still, have been
replaced by DIL connectors. Construction was completed in an evening and all
the usual checks and tests completed before installing in a Superboard case. A
few evenings later, | found the time to carry out some operational tests of the
module. As they say at Houston, “All systems were go!!!”

So, what will it do?

For the more experienced, the provision of ports to the UK101 and Superboard
adds facilities which are sadly lacking and for which applications are obvious. For
the less knowledgeable, however, it might be useful it we dwell on a brief
summary of the opportunities opened up.

By attaching quite simple circuits to the ports and writing very simple software
routines, it is possible to control external devices such as lamps, relays, sound
generators and almost anything for which an electrical control can be devised.
Conversely, the computer can Le controlled or provided with data by external
devices. Examples which can be a lot of fun include joystick controls for games,
switches, light-sensitive devices and, again, anything which can be made to
provide a suitable electrical signal. In my case, for instance, the ports connect to
an interface which takes Morse Code as an audio signal from my transmitting and

receiving equipment, resolves the audio into a stream ot logic which is then

decoded by the computer and displayed on the VDU. The software also provides
for the encoding of keyboard input into Morse and its output to a relay which in
turn keys the transmitter.

Conclusion
For those who are not afraid to pick up a soldering iron, the construction of your
own kit has a lot to commend it. You may not necessarily save money, but you will
gain satisfaction from the process and the knowledge gained. In the case of the
interface with which this review has been concerned, | feel able to recommend its
construction to those who are still (as most of us) learning our way around the
world of computers. Despite the one or two untidinesses described, itis relatively
easy to construct and gains much from the excellences of the articles in Practical
Electronics. The Technomatics kit, while not being a bargain, is worth buying —
particularly if you do not have a good components shop in town. Unlike some kits
in my experience, all the parts were provided, all were of acceptable quality and

. very important ... they did fit the board.

In due course, | will probably construct further items from Mr. Graham’s series,
and may be able to send in a further review.

In the meantime, how about other radio amateurs in the Group making
themselves known and sending in a few notes on their applications of OSI and
UK101 kit?

|[Ed. — in case anyone doesn’t yet know, the UKIOI is best described as a
‘photocopy’ of the Series | Superboard — in most places you have to look hard to
find the differences, not the similarities! The Series Il Superboard is essentially
the same, the differences being restricted to the video handling and the on-board
implementation of RS232 and modem lines. So the PE articles, which relate mostly
to the 40-pin output socket on the right-hand side of the board, should apply to
the Superboard and C1 series machines with no alteration at all. The larger
machines in the OSI range will probably be unable to use this expansion,
although Martin Kay’s Zen bus-to-bus interface board may be of use here- (see
Vol.1 No.4)|.

(u

B W

(

@

Adding a disk drive: the data separator
Richard Elen

One curious fact about OSI’s disk systems is that they rely almost entirely on
software to derive timing signals, etc. This no doubt derives from the fact that OSI
designed their disk systems some time ago, before modern LSI disk-controller
chips were available. One of the functions generally carried out by these ICs is
that of separating data and clock signals read from disk. As a result, many modern
drives do not include a data separator on the drive, although early ones generally
did (and now that much drive electronics is being replaced by other LSI chips,
some very new drives include data separation once again).

The result of all this is that if you ‘buy in” your drive to upgrade your OSI
system, i.e. you don’t get the drive via OSl, you may be missing a data separator.
On some OSlI systems, the drive is fitted with a little add-on boargj to handle thls
function (notably MPI and Shugart 5%in floppies). If you've obtained your drive
elsewhere, and intend to interface it with a 470, 505, 610 or 630 board, you will
encounter one of three possibilities:

1. A data separator is fitted. In this case, simply use the separated data and clock
lines in your interface. .

2. A data separator option is supplied on the board, but unpopulated. In this
case, it is most sensible to construct the separator in the space provided,
following the instructions and circuit described by the manufacturer. Separ-
ators dif?er in design, so we can give little guidance here. Make sure you have

the manuals; if you can’t work out the on-board requirements, you will have to

build this circuit. . .
3. No option is fitted. In this case, you will have to build your own, as shown

here.

+5V

T3 [in edge-awn]

U6 | RMWDATR/
Wy AR

25K
10-ovn

A
B s
2 ¢

-
P
“—‘—’_13_4: Se oATA |
A; » _—Wt |RN
e &} £ 7
[rest pom] #4121 sl 4 :z g‘a‘”
275u8%* ks = | |

* BOKe [275pS] for Bin Drints
2Ko

£ig.1 THCAL DAIR SEPACATDR. circuit [BASF] 6151 for S ;_‘p.,m

- disk-controller hardware designs utilise a phase-locked

Fig.1 shows a typical data separator circuit which may be added either on the disk
drive itself or on the controller board. It may be constructed on a small piece of
Veroboard and placed in any convenient location where it can pick up the raw
data line and five volts (plus ground).

The circuit described is that used on BASF 8in drives until quite recently. Later
models followed the course mentioned above: they don’t even have the option
available. BASF are now developing and supplying drives with an LS| controller:
this has the separator included in the LSl and you don’t need to do any work at all.

As an aside, BASF drives are a very good investment if you're thinking of buying
one new. They are very reliable, and thus don’t seem to exist on the used
equipment market. | have been runninF an 8in double-sided drive for some
months (see last issue): it is beautifully made, and exceptionally quiet in

operation. None of your usual clatter! A good supplier of these drives, both 8in_

and 5%in, is Melkuist Ltd of 35a Guildford Street, Luton LU1 2NQ. They use them
in their studio automation system because of their reliability, and because they
are so quiet they can be used in the studio control room without making a
distracting racket. Mention the User Group if you buy one from them.

In the circuit shown, the raw data signal is derived by NANDing the gated result
of the HeadLoad and Select signals with a line from the Time-Domain filter. As the
separator is an option on the BASF drives of this type, they fit one gate (labelled X)
as standard, to supply the raw data line, and parallel it with another gate (1). This
enables all the signals, separated and raw, to be available when the option is
fitted, but still aﬁows raw data to be output even if there isn’t a separator
component on the board. If you use this circuit, gates X and Y will already exist (or
their equivalent circuitry), and Gate 1 (V4 7438) can be omitted, connecting points
A and B together to drive the separator. In other words, you orly need to
construct the circuit from point B onwards, feeding point B with simple raw data.
Note that all the NAND gates (X and 1 through 4) are open-collector varieties:
hence the 1K pullup resistors. Note that resistor R is a 1% component for stability.

As 5%in and 8in drives require different time constants in the 74121
monostable, resistor R should by 10.0K for 8in drives (2.75 microseconds) and
22.0K for 5%sin (6uS).

The circuit shown is not the world’s most amazin% data separator. Many

oop separator, which is
more stable and can cope with speed variations in the disk with greater reliability.
However, the monostable-based design works faultlessly in my case, and anyway,
OSV’s disk controller circuitry makes great use of monostables for received data
timing: a PLL separator would represent a bit of electronic overkill! This leads to
an interesting speculation: it should be possible to redesign OSI’s receive data
monostable to become a data separator with a few mods on the controller board,
and we're looking into it. At present, though, until we have investigated more
fully, we recommend the approach described here — we know that it works!

With reference to the edge-connector pinouts described by the manufacturer
of your drive, it will be possible to deduce the correct lines on the ribbon-cable
which are to take the separated data and clock signals. The pin numbers on the
diagram refer to standard 8in drive edge-connector pinouts, as used by Siemens,
Shugart and BASF among others. Minifloppy drives are different: refer to the
manufacturer’s diagrams.

Setting up

When the separator has been constructed and installed, and the other interface

lines have been connected, it will be necessary to set up the data separator. This is

normally done with a special set-up alignment disk, which is hard to find and

expensive. Unless you can get hold of one, follow the ‘alignment algorithm’

described below:

Data separator alignment algorithm

Rotate the 10-turn 25K trimmer fully anticlockwise to the end of its travel.

Power up the system and insert a disk with operating system.

Hit BREAK and ‘D’ to boot the system. (It will fail to boot).

Rotate the trimmer control one half-turn clockwise.

Re-boot the system (BREAK and ‘D’).

IF booting fails, GOTO STEP 4.

ELSE:

Rotate the trimmer one quarter-turn clockwise.

Hit BREAK and ‘D’ to re-boot.

IF boot is successful, GOTO STEP 7.

ELSE:

10. Reset the trimmer to a position midway between the positions at which it first
and last booted successfully. Reboot to test this setting.

11. If boot is successful, the separator is now aligned.

WON ounhwih=

Note: If the system never boots successfully, check the wiring of the separator
and interface and try again from step 1. If it always boots successfully (most
unlikely) then set the trimmer to the middle of its travel.

After alignment, check that the boot is generally reliable, re-running this
procedure if it isn't. If the system never appears to ‘settle down’, recheck the
wiring thoroughly once again.

Relocating the Assembler
Tony Parsons

I have made the assumption that a person wishing to relocate the assembler will
also have sufficient memory to accommodate a relocated Extended Monitor, in
my case $42AF.

The Extended Monitor’s ‘Relocate’ facility is used initially to move the
assembler. (The program calls the appropriate routines). The program then uses
two tables to tidy up. The “Cat 1” job is to correct all the changes the Relocate
made but should not have. The “Cat 2” job is to change locations the Relocator
should have but didn’t, like hidden addresses etc.)

Note 1. Address $45F7 is the relocated ExMon'’s equivalent of the original $0B48.
You will have to insert the appropriate address for your configuration.

Note 2. As for Note 1: Original address for this routine is $0DBA.
8

The next step after complying with the two notes above, is to calculate the
difference in Hex between the original location of the assembler and the
proposed new location. From this the equivalent of the old start address $1300
should be derived, together with the updated locations for source file begin, end
and ‘Next Byte’ stores, the original locations being $12C9, $12CB and $12FE.

Run the program!

The prompt will be ‘R’

Reply XXXX=0240,1391

—ijust as in ExMon'’s relocate function where XXXX is the new first location, on
‘Return’ the program will execute. When done it jumps to $FE00.

You should next insert the required values for source file locations.As an aid |
have listed the new values for my machine.

First location $4AAF

Difference $486F (Between start new & start old) ie 4AAF-0240.

Entry Point $5B6F (1300 + 486F)

Source File start $5B38 LO $5B39 HI

Source File end pointer $5B3A $5B39

Next location $5B6D $5B6E

My source file begins $200 and ends $42AE. Whilst it is not essential (I think all
bugs have been removed) it is advisable to install the self healing patch at the
relocated equivalent of address $029C.

Using my case again as an example we have at $4BOB ($029C+ $486F)

$4BOB JMP $4972 ;inserted bit

$4BOE INY

$4BOF LDA ($24),Y

etc.

$4972 INY

$4973 LDA ($24),Y

$4975 CMP #$14

$4977 BCS $498D

$4979 DEY

$497A LDA ($24),Y

$497C CLC

$497D ADC #$6F ;Lo Byte of difference
$497F STA ($24),Y

$4981 INY

$4982 LDA ($24),Y

$4984 ADC #%$48 ;Hi Byte of difference
$4986 STA ($24),Y

$4988 LDA #$3F

$498A JSR $FFEE ;Print ‘2" if an address that Parsons
$498D DEY ;missed has just been corrected
$498E LDA ($24),Y

$4990 TAX

$4991 JMP $4BOE

You should now have a working assembler in a new location. Test it by deleting
the old one from memory and thoroughly exercising the new one with deliberate
errors etc. _

(,.

(k)More dealers...

Dealer Notes

-

Trickling down the vine has come information on some of the new dealers
recruited by OS(UK). One, Tomorrow MicroSystems, based at 1 Queen Street,
Hadleigh, Suffolk (0473 823698), has now become the ‘retail wing’ of OS(UK)
itself; quite what that means we’re not sure, but it seems that they themselves are
recruiting iary dealers, one being Steve Morrall of Online Design in
Portsmouth (0705 738153). Another new dealer is Tamsys at 12a Sheet Street,
Windsor (Windsor 56747) — the contact there is Philip Bowe. All of these we met
. briefly at MicroSystems, on the Ohio s 1 :

We've heard of a few more in the Home Counties area — Kram being one of
them — but we don’t know who or where they are! Let us know, so that we can
publish assorted details! s

-

(y e 'The trials and tribulations of Beaver Systems have been confusing a number of

(&

¢

geople — not least Steve Hanlan, who ran the company! Originally based in
hame, the company changed both address and name at the beginning of this
year — the address because their rented offices were sold, the name because an
automatic-test-equipment firm informed them that they had prior and sole rights
to the name ‘Beaver’. Next door to us in Street, and under the new name of
Avalon Computers, things went back to normal for a while. Then along caime D}

Systems, of “The Last One” fame, needing a contract programmer to handle .

implementation work on the Sharp and Ohio s!;tems. Exit Steve. And; effectively,
exit the new-ﬂedgad/\mbn,for%e is now down at liminster full-time:He'll be
at the PCW show, se versions of The Last One; and that will be the final
appearance of Avalon. from TLO enquiries, Steve is referring all software
matters to Premier Publications, the Croydon software house; hardware

enquiries refer to your local dealer.

...and none at all? '

We are actually a little worried about Ohio in general, and OS(UK) in particular. At
the same time as Comp have put their price down on the UK101 (to £120, or
perhaps even £99, we're told, for the kit version), the American original has gone
. up, with the fall of the £, to an unsaleable £200-odd — a slight difference! As
'mentioned in the editorial to this issue, the other hardware prices have gone ug:
by the same amount, making even the big C3 systems look over-priced. Since OSI
sales d ded on the fact of their being low-priced, this makes things a trifle
difficult over here. The lack of applications software has not helped matters either
— 65U may be a very good operating system for data-base work, and much faster
than yer tzpical CP/M, but there simply isn’t any software about; and OSl’s
infamous documentation (now rapi proving, we're glad to report — there
are now some usable BASIC manuals about) has not exactly made it easy to
develop your own. Despite the relk crudeness of CP/M, it is becoming a
standard; we wonder if OSI’s main sdles of the C3 series in the States have been
more for their use as CP/M machines than for 65U. In any case, if those ridiculous
prices are not revised, it's going to be bye-bye, OSI, we suspect...

One of the more annoying ?ects ts of the Ohio scene is the limited range of
software tools available. One of the more interesting of new ments, ?heﬂ,
is one which combines almost all of the available development tools into a single
add-on board. Our member Martin Spalton, who now runs MCS Electronics, has

I

been selling an improved version of both the Assembler and ExMon in a set of
four 2716-type EPROMs for some time now {see his advert below); he’s now
added a compatible PROM-programmer/EPROM board to his range, giving (when
ExMon and Assembler are installed) all the basic development tools for
machine-code work on a single add-on board, ready to run on power-on. The
board will sell as a kit for about £60, Martin tells, us, with ExMon and the
Assembler at £6 and £20 extra respectively; we’re told that Mutek will also be
selling a ready-built version for Martin later. this year. We have one on order at
present, and intend to include a review of it shortly. ‘

Small ads ; ' %
BASIC programmer’s toolkit for UK101,"C1/Superboard, C1E and C2 BASIC-in-ROM
systems. 2K of qerachine code on tape ndgiving 14 new commands including
RENUMBER, DELEFE, SEARCH, TRACE and OLD. Compatible with all monitors
(CEGMON only for C2). Only £10 inclusive (£9 for User Group members), with full
instructions. State computer type and memory size. Send SAE for more details. An
M version could be produced if there is sufficient interest. S.A. Smith, 36
Woodvale Ave, London SE25 4AE. TR '
Garbage-collector revision now available in mask piogrammed ROM. Direct
plug-in replacement for original BASIC+3 — no soldering. Suitable for Superboard
and’UK107. Special price to group-members £7. Please enclose suitable SAE. R.W.
Stibbons, 3 Mansfield Drive, Hayes, Midx, UB4 8DZ.
Superboard Il for sale: 8K RAM computer in excellent working order, switchable
1MHz or 2MHz with separate power supply, metal case. Complete with manuals
and games tapes. £210 ono. Phone Medway (0634) 252845.

User Group Notes

As mentioned elsewhere in this issue, we will be at this year’s PCW Show, 10-12
September (Thursday to Friday), at the Cunard Hotel in Hammersmith, next to the
A4 flyover and Hammersmith ‘tube stations. We only have a small stand, of
course, in the ‘hobbyist’ area downstairs; but we felt it would be the easiest way
of meeting up with as many of our members as possible. If anyone would like to
help us on the stand for any of the days, get in touch with us as soon as possible!
In any case, we've been able to get ‘Club vouchers’ from the show organisers,
giving 50p off the entrance fee; you should find one in this copy of the
Newsletter. We should have some spares left over; again, let us know. And see
you there, we hope! Rk

Instant Machine Code!

(thended Monitor and Assembler in~EPROM

e Ohio/Compukit Extended Monitor is now available in EPROM, located at $9800. This
greatly enhances the machine-code facilities of the standard machine; if you have CEGMON,
it adds LOAD and SAVE in both Hex Dump and Checksum formats, not te mention the
Disassembler, Search and all the other ExMon facilities.

An improved version of the Assembler is also available on a set of three EPROMs addressed
from $8000 to $97FF. New features include: user definable source-file space (so that if the
glmiram being assembled is to run from, say, page-3, then the source file can be placed
rther up memory — permitting ‘A3’ assembly to memory while retaining the source file in
RAM); listings and assemblies can be halted by cTri-S for viewing and restarted by G; and as
published by the User Group, line numbers can be suppressed during load from tape, to
permit simple merging of library subroutines.
Prices: ExXMon — £6.00 Assembler — £20.00 New 2716's — £4.50 No VAT. Please

_.include 50p P&P.
dlole: For copyright reasons, your original tape of ExMon and/or Assembler should be

ncluded thlg your order.

EPROM Memory/Programming Board

The prime functions of this pﬁnted circuit board are a) to grovide eight 24-pin EPROM sockets
as a memory expansion board and b) to provide an EPROM programmer; both of which will
handle 2516, 2716, 2532 and 2732 4/8Kbyte, 5V devices.

O PCB The PCB measures 100mm X 275mm and has a smf'e sided 40-pin edge connector
making it suitable for Eurocard type rack mounting. It is double-sided with plated
through holes, tinned, solder masked, with gold plated edge connectors and silk screen .
legend. A total of 28'IC sockets are used.

O Buffers Everyﬂmnﬂm board is fully buffered: address lines, R/W and @2 use 8T97s;
data lines use a 74L5245. IRQ and NMI interrupt lines are not used and not buffered.

O Memory Eight 24-pin EPROM sockets are provided and these are addressed as four 4K
blocks. As supcpi‘]ied they are decoded at , $9000, $C000 and $E000 and connected for
2716, but by rht}ing links and ' tracks on the board may be addressed anywhere in
memory space. Most combinations of memory chips may be used, including the
pin-compatible Hitachi RAMs; if 8 X 2782-type is required a 13-input NAND gate will be
needed to replace the 8-input NAND chip-enable gate supplied as standard.

elsewhere if required. It is software controlled, using a 6821 PIA for its bidirectional data
register;gd a 12-bit counter chip which, when clocked by the PIA, supplies addressin
for the EPROM being programmed. This feature, combined with the are suppli
makes the programmer very flexible. The hardware requirements of different EPROM
types are selected by 'personalit_;h;;l(?p‘ — pre-wired 14-pin DIL headers or, optionally, a
single multi-way DIL switch. programming voltage derived from the power
supply provided is software controlled and regulated to 25 volts. A standard low-profile
socket (sufficient for hobbyist use) is used as the programming socket, but there is
sufficient clearance for a Textool-type wo-insertion-z())rce socket g required.

O Output The board also provides a 40-pin output socket to allow further nsion to the
system. All the address and data lines, and @2 are buffered; the datafz:cﬁon signal
is also taken care of. This feature permits ‘daisy-chaining’ of other expansion boards
attached to the OSI/UK101 expansion socket, or for other users without a racking system.

(‘1 Programmer The EPROM programmer is fully addressed at $F780 but may be addressed

. nal price: £60.00 in kit form; exact price dependent on whether software is supplied
- istings, on

tape or in EPROM. g

MCS Electronics An EPROM mming service
9 Willowfields, Hilton, nr Derby, DE6 5GU. Tel: 028 373 3802

i

Make your computer

NAG...

Models currently available: ;
VB-1 VoxBox forall PETs £59
VB-2 VoxBox for Acom Atom m
(these units

VB-3 Voxloxforﬁ&1 typeﬂAplnNel :

RS-232 Vmwnh serH iMerface‘
£83
(*note: CTS sighal must be available)
VB-5 232 VoxBox for
(with interface cable and dmior gonnection)
The VB-4/VB-5 units indudeM s serial to
| | built-in
for these

VC-1 PET demonstration ausane .£2.50
VC-2 Atom demonstration cassette £2.50
Versions available for other makes of
computer — please call for details.

All units are ready-built, fully guaranteed
and complete with case and speaker,
mains PSU and lead and comprehensive
manual. The manual is also available
separately at £1. i (credited against

r).
Please include VAT at the appropriate rate
and £2.00 for carriage for any number of
units.

iv

%

lust one of the many uses to which (
you can put the fantastic Mutek

Voice
Synthesiser

This remarkable unit adds speech
output capabilities to almost any
computer with a parallel or sernal
output port.

Infinite Vocabulary
Fowlessthanthecostofmost
limited-vocabula 0'7 synthesisers the
‘Mutek VoxBox offers full phoneme
synthesis using the building blocks of

. This enables simple and easy
generation of programmed speech
and sentences of any length.

Most Computers
With!n minutes of receiving the

VoxBox you will be able to generate
W:‘:fﬂ'ﬂﬂ speech using the
sive documentation
with the unit. For most
o !heinterfacmg is tt:'s;a
matter of plugging in —

rem connector is supplied as part

w7 of the package. - ¥ %

_ Listen before you buy!

We m’t honestly say that the quality
is as good as human speech — but
why not call Bath (0225) 743289 after

rand listen to our computer
through VoxBox. You may
phaea credit-card order or a request
f& ﬁmher information after the
message.

RN

o dear

10
20
30

50
55

70

100
110
120
130
140
150
160
170
180
190
200
210
220
230
240
250
260
270
280
290
300
310
320
330

350
360
370
380
390

410
420
430
440
450
460
470

490

510
520
530
540
550
560

CAT1
NEXTS

SuB

CAT2
NEXTA

ADD

CLOFST

*=$5D00

JSR $A86C ; cr/lf

LDA #$52

JSR $FFEE ;R

JSR $45F7 ; get relocate parameters (see note 1)
SEC

LDA $DA
STA $26
SBC #$40
STA $20
LDA $DB
STA $27
SBC #$02
STA $21

JSR $4869
JSR CLOFST
INX

LDA CAT1TB, X
BNE SUB
INC $23
LDA $23
CMP #$14
BNE NEXTS
BEQ CAT2
JSR CALPTR
JSR SUBSTO
JMP NEXTS
JSR CLOFST
NOP

INX

LDA CAT2TB, X
BNE ADD
INC $23
LDA $23
CMP #%$14
BNE NEXTA
LDA #$0F
STA $23
LDA #$49
STA $22

JSR CALPTR
LDY #$00
CLC

LDA #$80
ADC $20
STA ($24), Y
LDA #$07
LDY #$06
ADC $21
STA ($24), Y
JMP $FE00
JSR CALPTR
JSR ADDSTO
JMP NEXTA
LDA #$00
SPA $22
STA $23

; Calc diff in 1st locations
; Store in 20, 21 pair

; Call relocate (see note 2)
; Clear off SGT pair 22, 23: X=#$FF

; Get next factor from CAT1 Offset table

; Add derived offset to program’s start
;Subtract diff from pair pointed to by 24, 25

;Adjust pointer to primary add table

10

570
580

600
610
620
630
640
650

670
690
700
710
720
730
740
750
760
770
780

810
820
830
840
850

870
880
890

910
920
930
940
950

970
980

1000
1010
1020
1030
1040
1050
1060
1070
1080
1090
1100
1110
1120
1130
1140

11

'

CALPTR

ADDSTO

CAT1TB

CAT2TB

TAX

DEX

RTS

STA $22

CLC

ADC $26

STA $24

LDA $23

ADC $27

STA $25

RTS

SEC

LDA ($24), Y

SBC $20

STA ($24), Y

INY

LDA ($24), Y

SBC $21

STA ($24), Y

RTS

LDY #$00

CLC

LDA ($24), Y

ADC $20

STA ($24), Y

INY

LDA ($24), Y

ADC $21

STA ($24), Y

RTS

.BYTE $00, $9E

.BYTE $00, $3A, $46, $8D

.BYTE $00, $97, $BA, $F2

.BYTE $00, $47, $4F, $56, $5C, $69, $73, $7F, $83, $A2
.BYTE $A7, $AF, $C2, $D6, $DE, $E6, $EC, $FA, $FF
.BYTE $00, $14, $2D, $35, $94, $B3, $CF, $E4, $FF
.BYTEe $00, $06, $12, $1F, $2F, $6F, $F1

.BYTE $00, $OF

.BYTE $00, $00, $C8, $F2, $F5

.BYTE $00, $28, $87, $93, $99, $A7, $AB, $B1, $E6, $EF
.BYTE $00, $C0, $F3

.BYTE $00, $39, $48, $53, $63, $78, $A6, $DA, $E0, $E6
.BYTE $00, $1A, $4A, $4E, $92, $9A, $C2, $EA, $FE
.BYTE $00, $3E, $60, $6C, $6F, $72

.BYTF $00, $03, $15, $18

.BYTE $00, $9C

.BYTE $00, $00, $00, $00,

.BYTE $00, $9D

.BYTE $00, $00, $9C, $D8

.BYTE $00, $21, $24, $27, $2A, $2D, $4E, $9A, $BE
.BYTE $00, $39, $40, $42, $44, $46, $48, $4A, $4C, $4E
.BYTE $50, $52, $54, $56, $58, $5A, $5C, $5E, $60, $62
.BYTE $64, $66, $68, $6A, $6C, $6E, $70, $72, $74, $76
.BYTE $78, $7A, $7C, $7E, $80, $82, $84, $86, $88, $8A
.BYTE $8C, $8E, $98, $E3

.BYTE $00, $08, $0B, $0E, $69, $81

.BYTE $00, $0E, $18, $1B, $4B, $D2, $E1

(* 1160
./ 170

1150 .BYTE $00, $00, $35, $3C, $54, $EE
.BYTE $00, $16, $79, $E5
.BYTE $00, $45, $92, $E8

1180 BYTE $00, $52, $55, $7A, $83, $9C, $B8, $BB

1190 .BYTE $00, $F4

1200 BYTE $00, $39, $58, $6E, $71, $7E, $8E, $DD, $EE, $FA
1210 .BYTE $00, $05, $08, $14, $1D, $CE, $F9

1220 .BYTE $00, $02, $17, $8D

1230 .BYTE $00, $07, $18

1240 .BYTE $00, $00, $00

600 BAUD cassette interface

g‘ George Chkiantz

Users may be interested in the following simple modification to double the speed
of the cassette interface. This applies to all versions of the 600 board (e.g. all
Superboards Series 1 or 2, UK101).

All that is needed is a single pole two-way switch mounted somewhere (the
hardest job). Cut the track between pins 3 and 4 of U14 (the ACIA) and TxClock
(just above the ACIA). Connect pins 3 and 4 of U14 to the centre pole of the
switch. Connect one side of the switch to the original Tx clock (i.e. re-joining the
track you have just cut) for 300 Baud operation, and connect the other side of the
switch to U57 pin 11, for 600 Baud.

Cut the track marked #

E D 6850 Q_/_\\._

_ElE - 7

K
MON CUT THIS TRAC

(.~ How it works: Tx Clock is derived from the divider chain through U57, which'is

arranged to divide by 13, and subsequently through U63 which divides by 2. By
moving Tx Clock’s take off point from U63/9 to U57/11, data will be clocked out of
the ACIA at twice the previous rate, although the carrier frequencies will remain
the same. Adjustment of the monostable U69 via R57 may be required if it is 'on
the edge’ but no subsequent adjustment should be needed on switching from 300
to 600 Baud.

With the above method, speeds of 1200 may be attempted (by connecting U14
pins 3 and 4 to U57/12), but reliability may suffer as U57 does not produce
symmetrical waveforms at this point. In order to achieve higher interface speeds,
higher carrier frequencies or, preferably, a different encoder must be used, such
as the one published by ETI or the working version of this sold by Mutek.

These higher speeds bring problems relating to the tape recorder and also to
BASIC.

\
/ 1. The quality of the tape recorder used must be such that its frequency
) response extends to beyond 10KHz with few drop outs and low wow and
flutter. The tape must be of sufficiently good quality for the above objectives
to be realised and the heads kept clean and demagnetised.

12

2. Problems relating to the way BASIC inputs a line remain to be solved. When

you write a line of BASIC and press return, the computer does a lot of work to
your BASIC line. It scans it, tokenizing or pre-digesting any key-words, finds
out where to insert the 'tokenised’ line, re-shuffles the stored program to
make room for the line, copies it into the space created, and finally re-links
the whole program at its re-arranged location. This obviously takes time, the
actual amount depending to some degree on how far down the token list your
commands actually are (MID$ is last).

Now the cassette interface saves a program as an ASCII file — exactly as it is LISTed.
In this way the cassette can pretend to be the keyboard on LOAD. This has the
advantage that special ‘'merge’ programs are not needed to concatenate files, and
that, should something go wrong, you can nearly always recover some part of
your hard work. However, it has the disadvantage that BASIC has to go through
the whole of the process described above for every line that comes off the
cassette. To give BASIC time to do this, the monitor is preset to issue 10 NULLs
after each carriage return when in the SAVE mode. As tape speeds are increased,
this number becomes insufficient and so when SAVEing at higher speeds, a
suitable number of nulls must be issued. This is accomplished by POKE13,xx
where xx is the number required, which you must determine by experiment and
may be as great as 75. Obviously this slows down the whole process, so that as far
as BASIC is concerned, a point of diminishing returns is reached as the Baud rate
increases.

Even worse, if a line is longer than the screen width, the time taken for the
screen to scroll may be enough to cause the loss of the next character, and the
previous one is repeated (a good explanation as to why the character is repeated
eludes me at present, but itis). Were it to lose the carriage return, the line will not
terminate, and all manner of confusion result. One solution to this problem (if
you have CEGMON) is to limit the scrolling window or substitute a "home cursor’
command for the carriage return by a small machine code patch to OUTVEC.
Another simple solution is to type:

SAVE

POKE 13,<number of nulls>

2: 2CHR$(15); CHR$(95): ?2: LIST (...start the tape...)

when about to SAVE a program which puts a control O on tape and suppresses
screen output, at least until an error actually occurs. By far the neatest way of
handling the situation is to write an ‘indirect file’ handler as is used to merge files
on.the disk systems, we may publish a discussion on this topic at a later date.

As you can see, fast tape handling may bring problems with BASIC. Fortunately
this is not the case with the assembler, as long as no line numbers get corrupted
(the assembler is not fast at inserting lines!) so if you do a lot of assembler work,
4800 Baud is an unqualified advantage. In machine code LOADs there should be
no problems, although a checksum loader might have problems at very high
speeds.

pl found a 4800 Baud interface on a C2 was well worth while. BASIC loads were
much faster, and machine code loads were stunning. ExMon loaded in a few
seconds, the assembler in about 35 secs (it took longer to find them than to load
them), both in straight OSI tape dump format. If a byte-loader had been used
these last could have been speeded up by virtue of the fact that the standard OSI
save format for a byte outputs two ASCII digits and a <RETURN>. | found the
system reliable enough for everyday use, although | would keep at least two high
speed copies of everything, and maybe even a safety copy at 300 Baud. However, |
do have a good quality cassette deck....

13

The BASICs of machine-code
Part 5: The processor status flags
Tom Graves

For the past few parts of this series we have digressed somewhat, through some
of the basic concepts of machine-code; now it is time we returned to the main
theme of the series, that of presenting and testing machine-code programs in
terms of a ‘dummy-BASIC'.

In the first part we looked briefly at most of the 6502’s instructions, and ways of
simulating them in BASIC. One group of instructions which causes a lot of
confusion is the branches — BNE, BCC and so on. The difficulty seems to be not
only the ‘relative jump’ nature of branches, but also that they are always
conditional (unlike JMP or JSR, the direct equivalents of GOTO and GOSUB),
depending on the state of specific bits in one of the processor’s registers, the P or
processor status register. Keeping track of the status of this status register is one

. of the trickier parts of machine-code programming — and is the usual cause of

unexpected jumps in the program!

The register is, like all of the accessible registers in the 6502, eight bits wide;
only seven of these are used (bit 5 is the unused one), and only the four
controlling the branches — Sign, oVerflow, Zero and Carry — need concern us for
now. Of the others, two — Break and Interrupt — are used for interrupt-handling,
which comes much later, and the last, the Decimal mode flag, is something we
had also best leave until later, to"avoid deep tangles in the 6502’s notions of
arithmetic.

The branches operate on the state of the remaining status flags. There are eight
branch op-codes, acting as pairs on one of the status bits:

BPL IF N=0 THEN GOTO...
BMI IF N=1 THEN GOTO...
BVC IF V=0 THEN GOTO...
BVS IF V=1 THEN GOTO...
BNE IF Z=0 THEN GOTO...
BEQ IF Z=1 THEN GOTO...
BCC IF C=0 THEN GOTO...
BCS IF C=1 THEN GOTO..

: Note the catch with BNE and BEQ — they are the other way round to what you

might expect! A zero result sets the Z flag; a non-zero result clears the flag.

The simplest way of handling the flags is to treat them as BASIC variabFes in
their own riiht — we just have to remember that they can only hold the numbers
0 or 1, unlike the A, X and Y variables we are using to represent the system
registers. We now also need to add two more variables, namely MEM and RES.
MEM we will use as a kind of general-purpose parking area, representing either a
memory address or, for some instructions like ROL A which treat registers like
memory, for the registers themselves. RES we will use as a kind of ‘register for
results’; there is actually a temporary-register of this kind within the 6502, but it is
not accessible to the programmer.

Once we have these two variables, we can use them to set and clear the status
flags — the N, V, Z and C variables — as required by each machine-code
instruction. For example, about half of the 6502 instructions act on the N and Z

/ flags, so we can build a BASIC subroutine to represent this:

10 Z=1: IF RES THEN Z=0
20 N=0: IF (RES AND 128) THEN N=1
30 RETURN

The Zero flag is cleared if there is a non-zero result in RES; the top bit of the byte
represents the sign, hence (RES AND 128) returns the value of the sign. (Note that
we don’t need to say IF RES<>0 THEN... — the simpler statement IF RES THEN...
produces the same effect). The op-codes for which this subroutine alone suffices
are AND, DEC, DEX, DEY, EOR, INC, INX, INY, LDA, LDX, LDY, ORA, PLA, TAX,
TAY, TXA and TYA.

ignoring the confusing BIT opcode for a moment, the only two opcodes
affecting the V flag are ADC and SBC — not surprising, since the two’s
complement overflow status which it represents is only important in arithmetic
operations. These two also act on N and Z, so their flag-update subroutine
includes the following line:
50 V=0: IF (RES AND 64) THEN V=1

...‘overflow’ relating to bit 6 of a byte — something else we’ll leave until later. The
remaining flag, the Carry, is acted on in three different ways, dependinF on
whether an add, a subtract or a rotation is going on. For ADC and the multiplying
rotates ASL and ROL, the carry is set if the result is larger than a byte can hold:
70 C=0: IF RES>255 THEN RES=RES-256: C=1

For SBC and the compares (CMP, CPX, CPY), the carry is set if the result is less
than zero — the carry here represents a ‘borrow’:

90 C=0: IF RES<0 THEN RES=RES+256: C=1

The last group is the dividing rotates, LSR and ROR; for these the carry represents
the remainder after the ‘divide by two’ operation:

110 C=0: IF (RES-INT(RES)) THEN C=1

..this line indicating the importance of integer arithmetic in our ‘dummy-BASIC’,

since there should only be 0 or .5 resulting from the (RES-INT(RES)) operation.
There are, of course, other instructions which act on the flags — those which

act directly on them, such as SEC and CLD. Those, along with the BIT instruction,

we'll look at next time as we develop the ‘dummy-BASIC’. For now, we can finish

off this main group by constructing a complete set of subroutines for the flags,

along with an ‘index’ for the relevant instructions:

10 V=0: IF (RES AND 64) THEN V=1

20 RETURN

30 GOSUB 10

40 C=0: IF RES>255 THEN C=150 GOTO 100

60 GOSUB 10

70 C=0: IF RES<0 THEN C=1

80 GOTO 100

90 C=0: IF (RES-INT(RES)) THEN C=1

100 Z=1: IF RES THEN Z=0

110 N=0: IF (RES AND 128) THEN N=1

120 RETURN

ADC.c.voinisenssssisscisisnensassnsnens GOSUB 30 LSR ..oceemosisnssosonannsnonsnmnnssmnsas GOSUB 90
ANDcocovimssinsssssissassnnisned GOSUB 100 ORA.....creense0i550i0nnnmnrennsssvanes GOSUB 100
ASL ..o viiens sssssnsiidesyansisisassiss GOSUB 40 PLA oo euiossssinsssissnssonsannnsonndes GOSUB 100
CMP, CPX, CPY......ceevvunnn. GOSUB 70 ROL....coosesnvrssssssonsissmsnenennnion GOSUB 40
DEC, DEX, DEYccoeevneennnen. GOSUB 100 ROR.....cooiiiiiiiiiiieeciee, GOSUB 90
EOR....ooiiiiiiiiiiiiiiiicciie GOSUB 100 SBC .o, GOSUB 60
INC, INX, INY ..o GOSUB 100 TAX, TAY i, GOSUB 100
LDA, LDX, LDY.....ccvvvernnnnennn. GOSUB 100 TXA, TYA i GOSUB 100

(

()

“LIST BASIC

0235
0237
0239
023B
023D
023F
0242
0244
0246
0248
024B
024D
0250
0252
0254
0256
0259
025B
025D
025F
0261
0263
0265
0267
0269
026C
026E
0270
0273
0274
0276
0278
027A
027¢C
027D
027F
0282
0284
0287
0288
028A
028C
028F
0291
0293

A57B
8550
AS7C
8551
A9FD
8DOODF
A90E
8553
A90A
20EEFF
A90D
20EEFF
653
D009
A9EF
CDOODF
DOFB
FOE5
A550
C57D
D009
A551
C57E
D003
4C74A2
A005
B150
99AA00
88
10F8
8452
A5AA
100E
48
A946
20EEFF
A94E
20EEFF
68
E652
297F
20EEFF
A5AB
D002
A920

VARIABLES AND FUNCTIONS” by Dr. Mike Whittle

LDA $7B
STA $50
LDA $7C
STA $51
LDA #$FD
STA $DFO0
LDA #$0E
STA $53
LDA #50A
JSR $FFEE
LDA #$0D
JSR $FFEE
DEC $53
BNE $025D
LDA #$EF
CMP $DF00
BNE $0256
BEQ $0242
LDA $50
CMP $7D
BNE $026C
LDA $51
CMP $7E
BNE $026C
JMP $A274
LDY #305
LDA ($50),Y
STA $00AA,Y
DEY

BPL $026E
STY $52
LDA $AA
BPL $028A
PHA

LDA #$46
JSR $FFEE
LDA #$4E
JSR $FFEE
PLA

INC $52
AND #$7F
JSR $FFEE
LDA $AB
BNE $0295
LDA #$20

¢ we we we we we wo

START ADDRESS LOW

TO 50

START ADDRESS HIGH
TO 51

SPACE BAR ROW

TO KEYBOARD

LINE COUNT = 15

TO 53

LOAD “LF~

PRINT

LOAD “CR~

PRINT

DECREMENT LINE COUNT
TO E IF +VE

SPACE BAR COLUMN
CHECK KEYBOARD

TO D IF NOT PRESSED
TO A IF PRESSED
CURRENT ADDRESS LOW
CHECK END ADDRESS

TO F IF NO MATCH
CURRENT ADDRESS HIGH
CHECK END ADDRESS

TO F IF NO MATCH
RETURN TO BASIC
COUNT 6 BYTES

PICK UP VARIABLE
STORE IN AA/AF
DECREMENT COUNTER
TO G IF NOT FINISHED
FF TO 52 AS “NUMERAL” FLAG
VARIABLE NAME FIRST LETTER
TO H IF TOP BIT CLEAR
PUSH ONTO STACK

LOAD “F~

PRINT

LOAD “N~

PRINT

PULL OFF STACK

CLEAR “NUMERAL® FLAG
CLEAR TOP BIT

PRINT

VARIABLE NAME SECOND LETTER
TO I IF NOT NULL
LOAD “Sp~

16

0295
0296
0298
029B
029C
029E
02A0
02A3
02A5
02A7
02AA
02AC
02AE
02B1
02B2
02B4
02B6
02B8
02BA
02BC
02BF
02C1
02C2
02C4
02C6
02C9
02CA
02cc
02CE
02D1
02D3
02D6
02Dp7
02D9
02DB
02DD
02DF
02E1

17

48
297F
20EEFF
68
1018
A924
20EEFF
E652
A920
20EEFF
A000
B1AD
20EEFF
C8
C4AC
30F6
2452
101C
A920
20EEFF
A5AD
48
0980
85AD
206EBY
68
1005
A92D
8D0001
A900
20C3A8
18
A550
6906
8550
9002
E651
4C4602

PHA

AND #$7F
JSR $FFEE
PLA

BPL $02B6
LDA #$24
JSR $FFEE
INC $52
LDA #520
JSR $FFEE
LDY #$00
LDA ($AD),Y
JSR $FFEE
INY

CPY $AC
BMI $02AC
BIT $52
BPL $02D6
LDA #$20
JSR $FFEE
LDA $AD
PHA

ORA #$80
STA $AD
JSR $BIGE
PLA

BPL $02D1
LDA #$2D
STA $0100
LDA #$00
JSR $A8C3
CLC

LDA $50
ADC #$06
STA $50
BCC $02E1
INC $51
JMP $0246

WO We We We We Ve We WS WE We We We WO We WE We WE WE W We WE We Ve We We We We WE We We We W We We We We we W

L]

[

~

=

=

2z

PUSH ONTO STACK
CLEAR TOP BIT

PRINT

PULL OFF STACK

TO K IF TOP BIT CLEAR
LOAD ~$~

PRINT

‘CLEAR “NUMERAL” FLAG

LOAD “SP~

PRINT

COUNTER FOR ASCII

PICK UP CHARACTER

PRINT

INCREMENT COUNTER

TEST FOR ALL DONE

TO J IF NOT

CHECK “NUMERAL” FLAG

TO M IF CLEARED

LOAD “SP~

PRINT

LOAD HIGH BYTE OF NUMBER
PUSH ONTO STACK

SET TOP BIT

REPLACE IN AD

CONVERT TO ASCII AT 0100 ON
PULL OFF STACK

TO L IF SIGN BIT CLEAR
LOAD “-~ '

STORE IN 0100

LOAD NULL FOR PRINT ROUTINE
PRINT ASCII FROM 0100 ON
PREPARE TO ADD

CURRENT ADDRESS LOW

ADD 6

REPLACE

TO N IF NO CARRY

INCREMENT CURENT ADDRESS HIGH

TO B FOR NEXT VARIABLE

Glitches

Red faces department!

We gaily printed a statement in last issue about Tony Parsons’ renumber routine
being error free — it was when Tony sent it here, but as most people will have
discovered, it most certainly wasn’t by the time our keyboard op had finished
with it! (To be fair, typing ASCII on a non-ASCII typesetter keyboard isn't easy —
on our now-departed CRTronic the simple statement A=B+C had to be typed as
OMOAOIBOcOMPOBOI8Oa1)C, so you can imagine what typical BASIC was
like! I'm typing this on a standard ASCII terminal, sending it out to the setter via
the Anvil code-converter - so it should be right this time...). Anyway, herewith
Tony’s corrections — including a number of lines that our op completely missed:
63090 H=PEEK(A+4): |=PEEK(A+5): K=PEEK(IA+6)

63350 AT=D1: NT=N1+1: GOTO 63320

63400 FOR X=1 TO LEN(N$)-1

63412 X1=LEN(O$)-LEN(N$)

63413 FOR X=1 TO X1

63414 POKE (A+5-LEN(N$)-X),32: NEXT

63420 A=A7: GOTO 63081

63765 FOR X=1 TO 20000

Tony has found that this last line confuses some people. Itis of course a "dummy
operation’, saving values on the stack in the only way that our BASIC knows; the
loop is jumped out of before completion, since no-one has enough memory to
hold 20,000 lines of BASIC!

Red faces department 11

Not so much a glitch as a reply, this one: several people took exception to my
casual reference to PC, PCW and allied mags as "the comics’. Why this should be
taken as an insult I'm not sure, but the term is a reasonable one, since most of us
devour their contents and drop them to one side in exactly the same way we
treated (treat?) the Beano or Private Eye. Don't we?

The only thing which worries me is that some members may be taking
altogether too serious a view of our interest in micros. The whole business of
computing is insane anyway - poking around in the depths of multi-valued
inverse logic — so we need those ‘comics’ not just to keep us up to date, but to
reintroduce a sense of hilarity as well at the time you need it most: at two o' clock
in the morning, when you're chasing yet another bug in your program!

Red faces department 111

And another different kind of glitch — the late arrival of this Newsletter. Some
members will know just how much work a newsletter of this kind involves; most,
I presume, will not. Your editor has been somewhat overloaded recently with a
little problem of commercial survival in a new venture — hence the delays in
delivering this issue, which had to take a rather lower priority. 1t's not so much
the production work — made much simpler now that we can take tapes and disks,
and output them straight into the setter — but the editing work, the sorting of all
the tiny notes and comments and queries you send in. 1's now obvious that |
cannot handle both aspects and still keep the Newsletter on time; so from next
issue (August according to the schedule) I will be handling the production only,
with Richard and George between them handling editing. And apologies 1o
everyone for all the delays to date — we'll be back on schedule soon — promise!

13

X=1bzJ=1
FOKEZ, X
E=INT (RND (1) ¥x8) +1

IFE=<4G0T0O1
FOKES4180,

GOSURZIZO

I=7+65: X=2
21=7~-63: X=2
2=7~65: X=

GOTO120
REM ¥ FLUTTER SPEED X

IFZ 55131 THENZ=55067
RETURN

29: 6GOSU
TECTION OF CANDLE BASE FROM ERASURE X
(HI2B00RZ XSE290THENZ=54242;: GOSUBZIZO0

REM % MOTH ROUND CANDLE NOVELTY ROUTINE X

REM ¥ FOR UK101 22 X 48 WITH CEGMON X

CL$=CHR® (26) : RB=57088: Z=54050: PRINTCL %3
REM % SET UF CANDLE AND HOLDER X

FORG= (Z+320)TO(Z+1152) STEF&4

FORH=1TO2: POKEG+H, 187: NEXT: NEXT

FORW=55199T0S5208: FOKEW, 145: NEXT

FOKESS134, 190: FOKESS5145, 189

FOEESS 138, 207: FOKESS141 (21 0: POKEZ+258, 222
REM X RANDOM GENERATOR X

REM % CANDLE FLAME SIMULATED FLICKER X

:FOKES4244,32: POKES4179, 178: POKES4243,177:60T0180
FOKES4179, 22: FOKES4243, 32: POKES4180, 176: POKES4244,175

REM % "MOTH" RANDOM FLUTTER X
ONEGOTO210, 220,230,240, 250, 260,270,280
237:60SUB350: GOTOZ00

)

FORF=1T0O10: NEXTF: RETURN

REM x MOTH JUMFS UF IF NEAR CANDLE X

IFFEEK (Z+128) =1870RFEEK (Z+129) =1870RPEEK (Z+127) =187 THENZ=Z-512
REM % MOTH DROFS DIAGONALLY IF CLOSE TO FLAME X

IFPEEK (Z+44) =1780RPEEK (Z+465) =1780RPEEK (Z+1) =178THENGOSUE410
IFPEEK (Z+64) =1760RFPEEK (Z+63) =1760RFEEK (Z-1) =176 THENGOSUR440

W=1

i Z=7+63: W=W+1: IFW>11 THENRETURN
b GOTO420

i W=1

i Z=7+65: W=W+1: IFW>1 1 THENRETURN
: GOTO450

i Ok

i

!

ti

© 1981 OSI/UK User Group, unless otherwise staied

il

]

i
&

